翻訳と辞書
Words near each other
・ "O" Is for Outlaw
・ "O"-Jung.Ban.Hap.
・ "Ode-to-Napoleon" hexachord
・ "Oh Yeah!" Live
・ "Our Contemporary" regional art exhibition (Leningrad, 1975)
・ "P" Is for Peril
・ "Pimpernel" Smith
・ "Polish death camp" controversy
・ "Pro knigi" ("About books")
・ "Prosopa" Greek Television Awards
・ "Pussy Cats" Starring the Walkmen
・ "Q" Is for Quarry
・ "R" Is for Ricochet
・ "R" The King (2016 film)
・ "Rags" Ragland
・ ! (album)
・ ! (disambiguation)
・ !!
・ !!!
・ !!! (album)
・ !!Destroy-Oh-Boy!!
・ !Action Pact!
・ !Arriba! La Pachanga
・ !Hero
・ !Hero (album)
・ !Kung language
・ !Oka Tokat
・ !PAUS3
・ !T.O.O.H.!
・ !Women Art Revolution


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

parallel evolution : ウィキペディア英語版
parallel evolution
Parallel evolution is the development of a similar trait in related, but distinct, species descending from the same ancestor, but from different clades.〔Parallel evolution: (Online Biology Glossary )〕〔Zhang, J. and Kumar, S. 1997. (Detection of convergent and parallel evolution at the amino acid sequence level ). ''Mol. Biol. Evol.'' 14, 527-36.〕
==Parallel vs. convergent evolution==

Given a particular trait that occurs in each of two lineages descended from a specified ancestor, it is possible in theory to define parallel and convergent evolutionary trends strictly, and distinguish them clearly from one another.〔 However the criteria for defining convergent as opposed to parallel evolution often are unclear in practice, so that diagnosis commonly is arbitrary in particular cases.
When two species are similar in a particular character, evolution is defined as parallel if the ancestors shared that similarity; if they did not, the evolution of that character in those species is defined as convergent. However, this distinction is not clear-cut. For one thing, the stated conditions are partly a matter of degree; all organisms share more or less recent common ancestors. In evolutionary biology the question of how far back to look for similar ancestors, and how similar those ancestors need be for one to consider parallel evolution to have taken place, cannot always be resolved. Some scientists accordingly have argued that parallel evolution and convergent evolution are more or less indistinguishable. Others insist that in practice we should not shy away from the gray area because many important distinctions between parallel and convergent evolution remain.
When the ancestral forms are unspecified or unknown, or the range of traits considered is not clearly specified, the distinction between parallel and convergent evolution becomes more subjective. For instance, Richard Dawkins in ''The Blind Watchmaker'' describes the striking similarity between placental and marsupial forms as the outcome of convergent evolution, because mammals on their respective ancestral continents had a long evolutionary history prior to the extinction of the dinosaurs. That period of separation would have permitted the accumulation of many relevant differences. Stephen Jay Gould differed; he described some of the same examples as having started from the common ancestor of all marsupials and placentals, and hence amounting to parallel evolution. And certainly, whenever similarities can be described in concept as having evolved from a common attribute deriving from a single remote ancestral line, that legitimately may regarded as parallel evolution.
In contrast, where quite different structures clearly have been co-opted to a similar form and function, one must necessarily regard the evolution as convergent. For example, consider ''Mixotricha paradoxa'', a eukaryotic microbe which has assembled a system of rows of apparent cilia and basal bodies closely resembling the system in ciliates. However, on inspection it turns out that in ''Mixotricha paradoxa'', what appear to be cilia actually are smaller symbiont microorganisms; there is no question of parallel evolution in such a case. Again, the differently oriented tails of fish and whales derived at vastly different times from radically different ancestors and any similarity in the resultant descendants must therefore have evolved convergently; any case in which lineages do not evolve together at the same time in the same ecospace might be described as convergent evolution at some point in time.
The definition of a trait is crucial in deciding whether a change is seen as divergent, or as parallel or convergent. For example, the evolution of the sesamoid "thumb" of the giant panda certainly is not parallel to that of the thumbs of primates, particularly hominins, and it also differs morphologically from primate thumbs, but from some points of view it might be regarded as convergent in function and appearance.
Again, in the image above, note that since serine and threonine possess similar structures with an alcohol side chain, the example marked ''"divergent"'' would be termed ''"parallel"'' if the amino acids were grouped by similarity instead of being considered individually. As another example, if genes in two species independently become restricted to the same region of the animals through regulation by a certain transcription factor, this may be described as a case of parallel evolution - but examination of the actual DNA sequence will probably show only divergent changes in individual basepair positions, since a new transcription factor binding site can be added in a wide range of places within the gene with similar effect.
A similar situation occurs considering the homology of morphological structures. For example, many insects possess two pairs of flying wings. In beetles, the first pair of wings is hardened into elytra, wing covers with little role in flight, while in flies the second pair of wings is condensed into small halteres used for balance. If the two pairs of wings are considered as interchangeable, homologous structures, this may be described as a parallel reduction in the number of wings, but otherwise the two changes are each divergent changes in one pair of wings.
Similar to convergent evolution, evolutionary relay describes how independent species acquire similar characteristics through their evolution in similar ecosystems, but not at the same time, such as (dorsal fins of sharks, cetaceans and ichthyosaurs).

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「parallel evolution」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.